Arabidopsis thaliana exosome subunit AtRrp4p is a hydrolytic 3'-->5' exonuclease containing S1 and KH RNA-binding domains.

نویسندگان

  • Julia A Chekanova
  • James A Dutko
  • I Saira Mian
  • Dmitry A Belostotsky
چکیده

The exosome, an evolutionarily conserved complex of multiple 3'-->5' exoribonucleases, is responsible for a variety of RNA processing and degradation events in eukaryotes. In this report Arabidopsis thaliana AtRrp4p is shown to be an active 3'-->5' exonuclease that requires a free 3'-hydroxyl and degrades RNA hydrolytically and distributively, releasing nucleoside 5'-monophosphate products. AtRrp4p behaves as an approximately 500 kDa species during sedimentation through a 10-30% glycerol gradient, co-migrating with AtRrp41p, another exosome subunit, and it interacts in vitro with AtRrp41p, suggesting that it is also present in the plant cell as a subunit of the exosome. We found that, in addition to a previously reported S1-type RNA-binding domain, members of the Rrp4p family of proteins contain a KH-type RNA-binding domain in the C-terminal half and show that either domain alone can bind RNA. However, only the full-length protein is capable of degrading RNA and interacting with AtRrp41p.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The RNA exosome complex central channel controls both exonuclease and endonuclease Dis3 activities in vivo and in vitro

The RNA exosome is an essential ribonuclease complex involved in RNA processing and decay. It consists of a 9-subunit catalytically inert ring composed of six RNase PH-like proteins forming a central channel and three cap subunits with KH/S1 domains located at the top. The yeast exosome catalytic activity is supplied by the Dis3 (also known as Rrp44) protein, which has both endo- and exoribonuc...

متن کامل

Genome analysis: RNA recognition motif (RRM) and K homology (KH) domain RNA-binding proteins from the flowering plant Arabidopsis thaliana.

Regulation of gene expression at the post-transcriptional level is mainly achieved by proteins containing well-defined sequence motifs involved in RNA binding. The most widely spread motifs are the RNA recognition motif (RRM) and the K homology (KH) domain. In this article, we survey the complete Arabidopsis thaliana genome for proteins containing RRM and KH RNA-binding domains. The Arabidopsis...

متن کامل

Functional analysis of glycin rich- RNA binding protein, a suppressor of trehalose-6-phosphate mediating growth arrest in Arabidopsis thaliana

Metabolism of the alpha-1,1 glucose disaccharide, trehalose, is indispensable in plants. In the Murashigeand Skoog (MS) medium, trehalose inhibits plant growth and allocation of carbon to roots. A suppressorof trehalose-6-phosphate (T6P) mediated growth arrest, GR-RBP2, is characterized in more detail.Phylogenetic analysis revealed that GR-RBP2 is a protein of likely prokaryot...

متن کامل

Structural characterization of yeast exosome using SAXS

The exosome is a large protein complex conserved in all eukaryotes that possesses 3’-5’ exoribonuclease activity [1]. It is playing a major role in RNA turnover and surveillance as well as processing of stable RNA species [2,3,1,4,5]. The exosome is composed of six distinct subunits homologous to the catalytic domains of ring shaped phosphorolytic bacterial RNase PH and PNPase (Rrp41, Rrp42, Rr...

متن کامل

A mutation in polynucleotide phosphorylase from Escherichia coli impairing RNA binding and degradosome stability.

Polynucleotide phosphorylase (PNPase), a 3' to 5' exonuclease encoded by pnp, plays a key role in Escherichia coli RNA decay. The enzyme, made of three identical 711 amino acid subunits, may also be assembled in the RNA degradosome, a heteromultimeric complex involved in RNA degradation. PNPase autogenously regulates its expression by promoting the decay of pnp mRNA, supposedly by binding at th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic acids research

دوره 30 3  شماره 

صفحات  -

تاریخ انتشار 2002